Parallel Universe Of Self Pdf

  1. Parallel Universe Theory
  2. Evidence Of Parallel Universes
  3. Parallel Universe Proof
  4. Parallel Universe Of Self Pdf
  5. People From Parallel Universes
  6. Parallel Universe Experiences
  7. Parallel Universe Of Self Pdf Online

Parallel Universe Of Self.pdf Cedric, The Forester (388 reads) The Casting Away Of Mrs. Lecks And Mrs. (194 reads) Rolandkanto (448 reads) Principles And Practices Of Teaching And Training: A. Download ebook pdf Parallel Universes of Self - Frederick Dodson Description: Springing from physics, and featured in science fiction, the Parallel Worlds Theory is an earth-shattering revision of our understanding of reality. The parallel universe principle can be applied in personal reality and everyday life. You can 'create' your reality. Parallel Universes of Self has 320 ratings and 40 reviews. Heba Ateyat قمت بتنزيله ملف pdf من. The parallel universe theory suggests there is. PARALLEL UNIVERSE OF SELF PDF READ Parallel Universe Of Self pdf. Download Parallel Universe Of Self pdf. Ebooks Parallel Universe Of Self pdf. Epub Parallel Universe Of Self pdf. Hp Operations Orchestration Software 3 scripts for complex processes that touch multiple systems and applications are difficult to create. Parallel Universes Of Self Pdf Parallel Universes Of Self Pdf You must truly to check out the book Parallel Universes Of Self Pdf due to the fact that you will certainly discover lots of lesson as well as experience from the Tom Fleischer Mentoring If you read this fantastic book, I believe you will obtain lots of advantages as well. Fact Sheet (PDF) Media Relations Contacts; Expand/collapse submenu for Careers Careers. A Physicist Explains Why Parallel Universes May Exist. Listen 34:01 34:01. Toggle more options.

Part of a series on
Physical cosmology
  • Big Bang·Universe
Backgrounds
  • Cosmic microwave background (CMB)·Cosmic neutrino background (CNB)
  • Hubble's law·Redshift
  • FLRW metric·Friedmann equations
Components
  • Dark energy
  • Dark matter
Structure
  • Reionization·Structure formation
  • Galaxy
  • Category

The multiverse,[1] also known as a maniverse, megaverse, metaverse, omniverse, or meta-universe, is a hypothetical group of multiple universes. Together, these universes comprise everything that exists: the entirety of space, time, matter, energy, and the physical laws and constants that describe them.[2][3][4][5] The different universes within the multiverse are called 'parallel universes', 'other universes', or 'alternate universes'.[6][7][8]

  • 6Classification schemes
    • 6.1Max Tegmark's four levels

History of the concept[edit]

In Dublin in 1952, Erwin Schrödinger gave a lecture in which he jocularly warned his audience that what he was about to say might 'seem lunatic'. He said that when his equations seemed to describe several different histories, these were 'not alternatives, but all really happen simultaneously'.[9]

The American philosopher and psychologist William James used the term 'multiverse' in 1895, but in a different context.[10] The term was first used in fiction and in its current physics context by Michael Moorcock in his 1963 SF Adventures novella The Sundered Worlds.

Brief explanation[edit]

Multiple universes have been hypothesized in cosmology, physics, astronomy, religion, philosophy, transpersonal psychology, Music and all kinds of literature, particularly in science fiction, Comic books and fantasy. In these contexts, parallel universes are also called 'alternate universes', 'quantum universes', 'interpenetrating dimensions', 'parallel universes', 'parallel dimensions', 'parallel worlds', 'parallel realities', 'quantum realities', 'alternate realities', 'alternate timelines', 'alternate dimensions' and 'dimensional planes'.

The physics community has debated the various multiverse theories over time. Prominent physicists are divided about whether any other universes exist outside of our own.

Some physicists say the multiverse is not a legitimate topic of scientific inquiry.[11] Concerns have been raised about whether attempts to exempt the multiverse from experimental verification could erode public confidence in science and ultimately damage the study of fundamental physics.[12] Some have argued that the multiverse is a philosophical notion rather than a scientific hypothesis because it cannot be empirically falsified. The ability to disprove a theory by means of scientific experiment has always been part of the accepted scientific method.[13]Paul Steinhardt has famously argued that no experiment can rule out a theory if the theory provides for all possible outcomes.[14]

In 2007, Nobel laureate Steven Weinberg suggested that if the multiverse existed, 'the hope of finding a rational explanation for the precise values of quark masses and other constants of the standard model that we observe in our Big Bang is doomed, for their values would be an accident of the particular part of the multiverse in which we live.'[15]

Search for evidence[edit]

Around 2010, scientists such as Stephen M. Feeney analyzed Wilkinson Microwave Anisotropy Probe (WMAP) data and claimed to find evidence suggesting that our universe collided with other (parallel) universes in the distant past.[16][17][18] However, a more thorough analysis of data from the WMAP and from the Planck satellite, which has a resolution 3 times higher than WMAP, did not reveal any statistically significant evidence of such a bubble universe collision.[19][20] In addition, there was no evidence of any gravitational pull of other universes on ours.[21][22]

Proponents and skeptics[edit]

Proponents of one or more of the multiverse hypotheses include Hugh Everett,[23]Brian Greene,[24][25]Max Tegmark,[26]Alan Guth,[27]Andrei Linde,[28]Michio Kaku,[29]David Deutsch,[30]Leonard Susskind,[31]Alexander Vilenkin,[32]Yasunori Nomura,[33]Raj Pathria,[34]Laura Mersini-Houghton,[35][36]Neil deGrasse Tyson,[37]Sean Carroll[38] and Stephen Hawking.[39]

Scientists who are generally skeptical of the multiverse hypothesis include: David Gross,[40]Paul Steinhardt,[41][42]Anna Ijjas,[42]Abraham Loeb,[42]David Spergel,[43]Neil Turok,[44]Viatcheslav Mukhanov,[45]Michael S. Turner,[46]Roger Penrose,[47]George Ellis,[48][49]Joe Silk,[50]Carlo Rovelli,[51]Adam Frank,[52]Marcelo Gleiser,[52]Jim Baggott[53] and Paul Davies.[54]

Arguments against Multiverse Theories[edit]

In his 2003 New York Times opinion piece, 'A Brief History of the Multiverse', author and cosmologist Paul Davies offered a variety of arguments that multiverse theories are non-scientific:[55]

For a start, how is the existence of the other universes to be tested? To be sure, all cosmologists accept that there are some regions of the universe that lie beyond the reach of our telescopes, but somewhere on the slippery slope between that and the idea that there is an infinite number of universes, credibility reaches a limit. As one slips down that slope, more and more must be accepted on faith, and less and less is open to scientific verification. Extreme multiverse explanations are therefore reminiscent of theological discussions. Indeed, invoking an infinity of unseen universes to explain the unusual features of the one we do see is just as ad hoc as invoking an unseen Creator. The multiverse theory may be dressed up in scientific language, but in essence it requires the same leap of faith.

— Paul Davies, The New York Times, 'A Brief History of the Multiverse'

George Ellis, writing in August 2011, provided a criticism of the multiverse, and pointed out that it is not a traditional scientific theory. He accepts that the multiverse is thought to exist far beyond the cosmological horizon. He emphasized that it is theorized to be so far away that it is unlikely any evidence will ever be found. Ellis also explained that some theorists do not believe the lack of empiricaltestabilityfalsifiability is a major concern, but he is opposed to that line of thinking:

Many physicists who talk about the multiverse, especially advocates of the string landscape, do not care much about parallel universes per se. For them, objections to the multiverse as a concept are unimportant. Their theories live or die based on internal consistency and, one hopes, eventual laboratory testing.

Ellis says that scientists have proposed the idea of the multiverse as a way of explaining the nature of existence. He points out that it ultimately leaves those questions unresolved because it is a metaphysical issue that cannot be resolved by empirical science. He argues that observational testing is at the core of science and should not be abandoned:[56]

As skeptical as I am, I think the contemplation of the multiverse is an excellent opportunity to reflect on the nature of science and on the ultimate nature of existence: why we are here.... In looking at this concept, we need an open mind, though not too open. It is a delicate path to tread. Parallel universes may or may not exist; the case is unproved. We are going to have to live with that uncertainty. Nothing is wrong with scientifically based philosophical speculation, which is what multiverse proposals are. But we should name it for what it is.

Self
— George Ellis, Scientific American, 'Does the Multiverse Really Exist?'

Classification schemes[edit]

Max Tegmark and Brian Greene have devised classification schemes for the various theoretical types of multiverses and universes that they might comprise.

Max Tegmark's four levels[edit]

CosmologistMax Tegmark has provided a taxonomy of universes beyond the familiar observable universe. The four levels of Tegmark's classification are arranged such that subsequent levels can be understood to encompass and expand upon previous levels. They are briefly described below.[57][58]

Level I: An extension of our Universe[edit]

A prediction of chaotic inflation is the existence of an infinite ergodic universe, which, being infinite, must contain Hubble volumes realizing all initial conditions.

Accordingly, an infinite universe will contain an infinite number of Hubble volumes, all having the same physical laws and physical constants. In regard to configurations such as the distribution of matter, almost all will differ from our Hubble volume. However, because there are infinitely many, far beyond the cosmological horizon, there will eventually be Hubble volumes with similar, and even identical, configurations. Tegmark estimates that an identical volume to ours should be about 1010115 meters away from us.[26]

Given infinite space, there would, in fact, be an infinite number of Hubble volumes identical to ours in the universe.[59] This follows directly from the cosmological principle, wherein it is assumed that our Hubble volume is not special or unique.

Level II: Universes with different physical constants[edit]

Bubble universes – every disk represents a bubble universe. Our universe is represented by one of the disks.
Universe 1 to Universe 6 represent bubble universes. Five of them have different physical constants than our universe has.

In the chaotic inflation theory, which is a variant of the cosmic inflation theory, the multiverse or space as a whole is stretching and will continue doing so forever,[60] but some regions of space stop stretching and form distinct bubbles (like gas pockets in a loaf of rising bread). Such bubbles are embryonic level I multiverses.

Different bubbles may experience different spontaneous symmetry breaking, which results in different properties, such as different physical constants.[59]

Level II also includes John Archibald Wheeler's oscillatory universe theory and Lee Smolin's fecund universes theory.

Level III: Many-worlds interpretation of quantum mechanics[edit]

Hugh Everett III's many-worlds interpretation (MWI) is one of several mainstream interpretations of quantum mechanics.

In brief, one aspect of quantum mechanics is that certain observations cannot be predicted absolutely. Instead, there is a range of possible observations, each with a different probability. According to the MWI, each of these possible observations corresponds to a different universe. Suppose a six-sided die is thrown and that the result of the throw corresponds to a quantum mechanics observable. All six possible ways the die can fall correspond to six different universes.

Tegmark argues that a Level III multiverse does not contain more possibilities in the Hubble volume than a Level I or Level II multiverse. In effect, all the different 'worlds' created by 'splits' in a Level III multiverse with the same physical constants can be found in some Hubble volume in a Level I multiverse. Tegmark writes that, 'The only difference between Level I and Level III is where your doppelgängers reside. In Level I they live elsewhere in good old three-dimensional space. In Level III they live on another quantum branch in infinite-dimensional Hilbert space.'

Similarly, all Level II bubble universes with different physical constants can, in effect, be found as 'worlds' created by 'splits' at the moment of spontaneous symmetry breaking in a Level III multiverse.[59] According to Yasunori Nomura,[33]Raphael Bousso, and Leonard Susskind,[31] this is because global spacetime appearing in the (eternally) inflating multiverse is a redundant concept. This implies that the multiverses of Levels I, II, and III are, in fact, the same thing. This hypothesis is referred to as 'Multiverse = Quantum Many Worlds'. According to Yasunori Nomura, this quantum multiverse is static, and time is a simple illusion.[61]

Related to the many-worlds idea are Richard Feynman's multiple histories interpretation and H. Dieter Zeh's many-minds interpretation.

Level IV: Ultimate ensemble[edit]

The ultimate mathematical universe hypothesis is Tegmark's own hypothesis.[62]

This level considers all universes to be equally real which can be described by different mathematical structures.

Tegmark writes:

Self

Abstract mathematics is so general that any Theory Of Everything (TOE) which is definable in purely formal terms (independent of vague human terminology) is also a mathematical structure. For instance, a TOE involving a set of different types of entities (denoted by words, say) and relations between them (denoted by additional words) is nothing but what mathematicians call a set-theoretical model, and one can generally find a formal system that it is a model of.

He argues that this 'implies that any conceivable parallel universe theory can be described at Level IV' and 'subsumes all other ensembles, therefore brings closure to the hierarchy of multiverses, and there cannot be, say, a Level V.'[26]

Jürgen Schmidhuber, however, says that the set of mathematical structures is not even well-defined and that it admits only universe representations describable by constructive mathematics—that is, computer programs.

Schmidhuber explicitly includes universe representations describable by non-halting programs whose output bits converge after finite time, although the convergence time itself may not be predictable by a halting program, due to the undecidability of the halting problem.[63][64][65] He also explicitly discusses the more restricted ensemble of quickly computable universes.[66]

Brian Greene's nine types[edit]

The American theoretical physicist and string theoristBrian Greene discussed nine types of multiverses:[67]

Quilted
The quilted multiverse works only in an infinite universe. With an infinite amount of space, every possible event will occur an infinite number of times. However, the speed of light prevents us from being aware of these other identical areas.
Inflationary
The inflationary multiverse is composed of various pockets in which inflation fields collapse and form new universes.
Brane
The brane multiverse version postulates that our entire universe exists on a membrane (brane) which floats in a higher dimension or 'bulk'. In this bulk, there are other membranes with their own universes. These universes can interact with one another, and when they collide, the violence and energy produced is more than enough to give rise to a big bang. The branes float or drift near each other in the bulk, and every few trillion years, attracted by gravity or some other force we do not understand, collide and bang into each other. This repeated contact gives rise to multiple or 'cyclic' big bangs. This particular hypothesis falls under the string theory umbrella as it requires extra spatial dimensions.
Cyclic
The cyclic multiverse has multiple branes that have collided, causing Big Bangs. The universes bounce back and pass through time until they are pulled back together and again collide, destroying the old contents and creating them anew.
Landscape
The landscape multiverse relies on string theory's Calabi–Yau spaces. Quantum fluctuations drop the shapes to a lower energy level, creating a pocket with a set of laws different from that of the surrounding space.
Quantum
The quantum multiverse creates a new universe when a diversion in events occurs, as in the many-worlds interpretation of quantum mechanics.
Holographic
The holographic multiverse is derived from the theory that the surface area of a space can encode the contents of the volume of the region.
Simulated
The simulated multiverse exists on complex computer systems that simulate entire universes.
Ultimate
The ultimate multiverse contains every mathematically possible universe under different laws of physics.

Cyclic theories[edit]

In several theories, there is a series of infinite, self-sustaining cycles (for example, an eternity of Big Bangs, Big Crunches, and/or Big Freezes).

M-theory[edit]

A multiverse of a somewhat different kind has been envisaged within string theory and its higher-dimensional extension, M-theory.[68]

These theories require the presence of 10 or 11 spacetime dimensions respectively. The extra 6 or 7 dimensions may either be compactified on a very small scale, or our universe may simply be localized on a dynamical (3+1)-dimensional object, a D3-brane. This opens up the possibility that there are other branes which could support other universes.[69][70]

Black-hole cosmology[edit]

Black-hole cosmology is a cosmological model in which the observable universe is the interior of a black hole existing as one of possibly many universes inside a larger universe.[citation needed] This includes the theory of white holes, which are on the opposite side of space-time.

Anthropic principle[edit]

The concept of other universes has been proposed to explain how our own universe appears to be fine-tuned for conscious life as we experience it.

If there were a large (possibly infinite) number of universes, each with possibly different physical laws (or different fundamental physical constants), then some of these universes (even if very few) would have the combination of laws and fundamental parameters that are suitable for the development of matter, astronomical structures, elemental diversity, stars, and planets that can exist long enough for life to emerge and evolve.

The weak anthropic principle could then be applied to conclude that we (as conscious beings) would only exist in one of those few universes that happened to be finely tuned, permitting the existence of life with developed consciousness. Thus, while the probability might be extremely small that any particular universe would have the requisite conditions for life (as we understand life), those conditions do not require intelligent design as an explanation for the conditions in the Universe that promote our existence in it.

An early form of this reasoning is evident in Arthur Schopenhauer's 1844 work 'Von der Nichtigkeit und dem Leiden des Lebens', where he argues that our world must be the worst of all possible worlds, because if it were significantly worse in any respect it could not continue to exist.[71]

Occam's razor[edit]

Proponents and critics disagree about how to apply Occam's razor. Critics argue that to postulate an almost infinite number of unobservable universes, just to explain our own universe, is contrary to Occam's razor.[72] However, proponents argue that in terms of Kolmogorov complexity the proposed multiverse is simpler than a single idiosyncratic universe.[59]

For example, multiverse proponent Max Tegmark argues:

[A]n entire ensemble is often much simpler than one of its members. This principle can be stated more formally using the notion of algorithmic information content. The algorithmic information content in a number is, roughly speaking, the length of the shortest computer program that will produce that number as output. For example, consider the set of all integers. Which is simpler, the whole set or just one number? Naively, you might think that a single number is simpler, but the entire set can be generated by quite a trivial computer program, whereas a single number can be hugely long. Therefore, the whole set is actually simpler... (Similarly), the higher-level multiverses are simpler. Going from our universe to the Level I multiverse eliminates the need to specify initial conditions, upgrading to Level II eliminates the need to specify physical constants, and the Level IV multiverse eliminates the need to specify anything at all... A common feature of all four multiverse levels is that the simplest and arguably most elegant theory involves parallel universes by default. To deny the existence of those universes, one needs to complicate the theory by adding experimentally unsupported processes and ad hoc postulates: finite space, wave function collapse and ontological asymmetry. Our judgment therefore comes down to which we find more wasteful and inelegant: many worlds or many words. Perhaps we will gradually get used to the weird ways of our cosmos and find its strangeness to be part of its charm.[59][73]

— Max Tegmark

Modal realism[edit]

Possible worlds are a way of explaining probability and hypothetical statements. Some philosophers, such as David Lewis, believe that all possible worlds exist and that they are just as real as the world we live in (a position known as modal realism).[74]

See also[edit]

  • Martin Rees, Astronomer Royal

References[edit]

  1. ^Laszlo, Ervin (2003). The Cennectivity Hypothesis: Fountations of an Integral Science of Quantum, Cosmos, Life, and Consciousness, p.108. State University of New York Press, Albany. ISBN0791457850
  2. ^'Planck reveals an almost perfect Universe'.
  3. ^'Space in Images'.
  4. ^'Multiple universes'.
  5. ^'Multiple universes principle'.
  6. ^'Multiverses: Do Other Universes Exist?'.
  7. ^'Split the Universe'.
  8. ^'Hidden Portals in Earth's Magnetic Field'.
  9. ^'Erwin Schrödinger and the Quantum Revolution by John Gribbin: review'.
  10. ^James, William, The Will to Believe, 1895; and earlier in 1895, as cited in OED's new 2003 entry for 'multiverse': James, William (October 1895), 'Is Life Worth Living?', Internat. JRNL. Ethics, 6: 10, doi:10.1086/205378, Visible nature is all plasticity and indifference, a multiverse, as one might call it, and not a universe.
  11. ^Kragh, H. (2009). 'Contemporary History of Cosmology and the Controversy over the Multiverse'. Annals of Science. 66 (4): 529–551. doi:10.1080/00033790903047725.
  12. ^Ellis, George; Silk, Joe (16 December 2014). 'Scientific Method: Defend the Integrity of Physics'. Nature. 516 (7531): 321–323. Bibcode:2014Natur.516..321E. doi:10.1038/516321a. PMID25519115.
  13. ^'Feynman on Scientific Method'. YouTube. Retrieved 28 July 2012.
  14. ^Steinhardt, Paul (3 June 2014). 'Big Bang blunder bursts the Multiverse bubble'. Nature. 510 (7503): 9. Bibcode:2014Natur.510....9S. doi:10.1038/510009a. PMID24899270.
  15. ^Weinberg, Steven (20 November 2007). 'Physics: What we do and don't know'. The New York Review of Books.
  16. ^'Astronomers Find First Evidence Of Other Universe'. technologyreview.com. 13 December 2010. Retrieved 12 October 2013.
  17. ^Max Tegmark; Alexander Vilenkin (19 July 2011). 'The Case for Parallel Universes'. Retrieved 12 October 2013.
  18. ^'Is Our Universe Inside a Bubble? First Observational Test of the 'Multiverse''. Science Daily. sciencedaily.com. 3 August 2011. Retrieved 12 October 2013.
  19. ^Feeney, Stephen M.; et al. (2011). 'First observational tests of eternal inflation: Analysis methods and WMAP 7-year results'. Physical Review D. 84 (4): 43507. arXiv:1012.3667. Bibcode:2011PhRvD..84d3507F. doi:10.1103/PhysRevD.84.043507.
  20. ^Feeney; et al. (2011). 'First observational tests of eternal inflation'. Physical Review Letters. 107 (7): 071301. arXiv:1012.1995. Bibcode:2011PhRvL.107g1301F. doi:10.1103/PhysRevLett.107.071301. PMID21902380.. Bousso, Raphael; Harlow, Daniel; Senatore, Leonardo (2015). 'Inflation after False Vacuum Decay: Observational Prospects after Planck'. Physical Review D. 91 (8): 083527. arXiv:1309.4060. Bibcode:2015PhRvD..91h3527B. doi:10.1103/PhysRevD.91.083527.
  21. ^Collaboration, Planck; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Levy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bikmaev, I.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Butler, R. C.; Cabella, P.; Cardoso, J. -F.; Catalano, A.; Chamballu, A.; et al. (20 March 2013). 'Planck intermediate results. XIII. Constraints on peculiar velocities'. Astronomy & Astrophysics. 561: A97. arXiv:1303.5090. Bibcode:2014A&A...561A..97P. doi:10.1051/0004-6361/201321299.
  22. ^'Blow for 'dark flow' in Planck's new view of the cosmos'. New Scientist. 3 April 2013. Retrieved 10 March 2014.
  23. ^The Many Worlds of Hugh Everett, Scientific American
  24. ^Greene, Brian (24 January 2011). 'A Physicist Explains Why Parallel Universes May Exist'. npr.org (Interview). Interviewed by Terry Gross. Archived from the original on 13 September 2014. Retrieved 12 September 2014.
  25. ^Greene, Brian (24 January 2011). 'Transcript:A Physicist Explains Why Parallel Universes May Exist'. npr.org (Interview). Interviewed by Terry Gross. Archived from the original on 13 September 2014. Retrieved 12 September 2014.
  26. ^ abcTegmark, Max (2003). 'Parallel Universes'. In 'Science and Ultimate Reality: From Quantum to Cosmos', Honoring John Wheeler's Th Birthday. J. D. Barrow, P.C.W. Davies, & C.L. Harper Eds. v1. 288 (5): 40–51. arXiv:astro-ph/0302131. Bibcode:2003SciAm.288e..40T. doi:10.1038/scientificamerican0503-40.Tegmark, M (May 2003). 'Parallel universes. Not just a staple of science fiction, other universes are a direct implication of cosmological observations'. Scientific American. Vol. 288. pp. 40–51. arXiv:astro-ph/0302131. Bibcode:2003SciAm.288e..40T. doi:10.1038/scientificamerican0503-40. PMID12701329.
  27. ^'Alan Guth: Inflationary Cosmology: Is Our Universe Part of a Multiverse?'. YouTube. Retrieved 6 October 2014.
  28. ^Linde, Andrei (27 January 2012). 'Inflation in Supergravity and String Theory: Brief History of the Multiverse'(PDF). ctc.cam.ac.uk. Archived(PDF) from the original on 14 July 2014. Retrieved 13 September 2014.
  29. ^Parallel Worlds: A Journey Through Creation, Higher Dimensions, and the Future of the Cosmos
  30. ^David Deutsch (1997). 'The Ends of the Universe'. The Fabric of Reality: The Science of Parallel Universes—and Its Implications. London: Penguin Press. ISBN0-7139-9061-9.
  31. ^ abBousso, R.; Susskind, L. (2012). 'Multiverse interpretation of quantum mechanics'. Physical Review D. 85 (4): 045007. arXiv:1105.3796. Bibcode:2012PhRvD..85d5007B. doi:10.1103/PhysRevD.85.045007.
  32. ^Vilenkin, Alex (2007). Many Worlds in One: The Search for Other Universes. ISBN9780374707149.
  33. ^ abNomura, Y. (2011). 'Physical theories, eternal inflation, and the quantum universe'. Journal of High Energy Physics. 2011 (11): 63. arXiv:1104.2324. Bibcode:2011JHEP...11..063N. doi:10.1007/JHEP11(2011)063.
  34. ^Pathria, R. K. (1972). 'The Universe as a Black Hole'. Nature. 240 (5379): 298–299. Bibcode:1972Natur.240..298P. doi:10.1038/240298a0.
  35. ^Catchpole, Heather (24 November 2009). 'Weird data suggests something big beyond the edge of the universe'. Cosmos. Archived from the original on 14 July 2014. Retrieved 27 July 2014.
  36. ^Moon, Timur (19 May 2013). 'Planck Space Data Yields Evidence of Universes Beyond Our Own'. International Business Times. Retrieved 27 July 2014.
  37. ^Freeman, David (4 March 2014). 'Why Revive 'Cosmos?' Neil DeGrasse Tyson Says Just About Everything We Know Has Changed'. huffingtonpost.com. Archived from the original on 13 September 2014. Retrieved 12 September 2014.
  38. ^Sean Carroll (18 October 2011). 'Welcome to the Multiverse'. Discover. Retrieved 5 May 2015.
  39. ^Carr, Bernard (21 June 2007). Universe or Multiverse. p. 19. ISBN9780521848411. Some physicists would prefer to believe that string theory, or M-theory, will answer these questions and uniquely predict the features of the Universe. Others adopt the view that the initial state of the Universe is prescribed by an outside agency, code-named God, or that there are many universes, with ours being picked out by the anthropic principle. Hawking argued that string theory is unlikely to predict the distinctive features of the Universe. But neither is he is an advocate of God. He therefore opts for the last approach, favoring the type of multiverse which arises naturally within the context of his own work in quantum cosmology.
  40. ^Davies, Paul (2008). 'Many Scientists Hate the Multiverse Idea'. The Goldilocks Enigma: Why Is the Universe Just Right for Life?. Houghton Mifflin Harcourt. p. 207. ISBN9780547348469.
  41. ^Steinhardt, Paul (9 March 2014). 'Theories of Anything'. edge.org. 2014 : WHAT SCIENTIFIC IDEA IS READY FOR RETIREMENT?. Archived from the original on 10 March 2014. Retrieved 9 March 2014.
  42. ^ abcIjjas, Anna; Loeb, Abraham; Steinhardt, Paul (February 2017), 'Cosmic Inflation Theory Faces Challenges', Scientific American, 316 (2): 32–39, doi:10.1038/scientificamerican0217-32, PMID28118351
  43. ^'Is Nature Simple? 2018 Breakthrough Prize Symposium Panel'. YouTube. Retrieved 14 January 2018.
  44. ^Gibbons, G.W.; Turok, Neil (2008). 'The Measure Problem in Cosmology'. Phys. Rev. D. 77 (6): 063516. arXiv:hep-th/0609095. Bibcode:2008PhRvD..77f3516G. doi:10.1103/PhysRevD.77.063516.
  45. ^Mukhanov, Viatcheslav (2014). 'Inflation without Selfreproduction'. Fortschritte der Physik. 63 (1): 36–41. arXiv:1409.2335. Bibcode:2015ForPh..63...36M. doi:10.1002/prop.201400074.
  46. ^Woit, Peter (9 June 2015). 'A Crisis at the (Western) Edge of Physics'. Not Even Wrong.
  47. ^Woit, Peter (14 June 2015). 'CMB @ 50'. Not Even Wrong.
  48. ^Ellis, George F. R. (1 August 2011). 'Does the Multiverse Really Exist?'. Scientific American. Vol. 305 no. 2. New York City: Nature Publishing Group. pp. 38–43. Bibcode:2011SciAm.305a..38E. doi:10.1038/scientificamerican0811-38. ISSN0036-8733. LCCN04017574. OCLC828582568. Retrieved 12 September 2014.
  49. ^Ellis, George (2012). 'The Multiverse: Conjecture, Proof, and Science'(PDF). Slides for a talk at Nicolai Fest Golm 2012. Archived(PDF) from the original on 13 September 2014. Retrieved 12 September 2014.
  50. ^Ellis, George; Silk, Joe (16 December 2014), 'Scientific Method: Defend the Integrity of Physics', Nature, 516 (7531): 321–323, Bibcode:2014Natur.516..321E, doi:10.1038/516321a, PMID25519115
  51. ^Scoles; Sarah (19 April 2016), 'Can Physics Ever Prove the Multiverse is Real', Smithsonian.com
  52. ^ abFrank, Adam; Gleiser, Marcelo (5 June 2015). 'A Crisis at the Edge of Physics'. The New York Times.
  53. ^Baggott, Jim (1 August 2013). Farewell to Reality: How Modern Physics Has Betrayed the Search for Scientific Truth. Pegasus. ISBN978-1-60598-472-8.
  54. ^Davies, Paul (12 April 2003). 'A Brief History of the Multiverse'. The New York Times.
  55. ^Davies, Paul (12 April 2003). 'A Brief History of the Multiverse'. New York Times. Retrieved 16 August 2011.
  56. ^Ellis, George F. R. (1 August 2011). 'Does the Multiverse Really Exist?'. Scientific American. Vol. 305 no. 2. New York City: Nature Publishing Group. pp. 38–43. Bibcode:2011SciAm.305a..38E. doi:10.1038/scientificamerican0811-38. ISSN0036-8733. LCCN04017574. OCLC828582568. Retrieved 16 August 2011.
  57. ^Tegmark, Max (May 2003). 'Parallel Universes'. Scientific American. Vol. 288. pp. 40–51. arXiv:astro-ph/0302131. Bibcode:2003SciAm.288e..40T. doi:10.1038/scientificamerican0503-40. PMID12701329.
  58. ^Tegmark, Max (23 January 2003). Parallel Universes(PDF). Retrieved 7 February 2006.
  59. ^ abcde'Parallel universes. Not just a staple of science fiction, other universes are a direct implication of cosmological observations.', Tegmark M., Sci Am. 2003 May;288(5):40–51.
  60. ^'First Second of the Big Bang'. How The Universe Works 3. 2014. Discovery Science.
  61. ^Nomura, Yasunori; Johnson, Matthew C.; Mortlock, Daniel J.; Peiris, Hiranya V. (2012). 'Static quantum multiverse'. Physical Review D. 86 (8): 083505. arXiv:1205.5550. Bibcode:2012PhRvD..86h3505N. doi:10.1103/PhysRevD.86.083505.
  62. ^Tegmark, Max (2014). Our Mathematical Universe: My Quest for the Ultimate Nature of Reality. Knopf Doubleday Publishing Group. ISBN9780307599803.
  63. ^J. Schmidhuber (1997): A Computer Scientist's View of Life, the Universe, and Everything. Lecture Notes in Computer Science, pp. 201–208, Springer: IDSIA – Dalle Molle Institute for Artificial Intelligence
  64. ^Schmidhuber, Juergen (2000). 'Algorithmic Theories of Everything'. Sections In: Hierarchies of Generalized Kolmogorov Complexities and Nonenumerable Universal Measures Computable in the Limit. International Journal of Foundations of Computer Science ():587-612 (2002). Section 6 In: The Speed Prior: A New Simplicity Measure Yielding Near-Optimal Computable Predictions. In J. Kivinen and R. H. Sloan, Editors, Proceedings of the 15th Annual Conference on Computational Learning Theory(COLT 2002), Sydney, Australia, Lecture Notes in Artificial Intelligence, Pages 216-228. Springer, 2002. 13 (4): 1–5. arXiv:quant-ph/0011122. Bibcode:2000quant.ph.11122S.
  65. ^J. Schmidhuber (2002): Hierarchies of generalized Kolmogorov complexities and nonenumerable universal measures computable in the limit. International Journal of Foundations of Computer Science 13(4):587–612 IDSIA – Dalle Molle Institute for Artificial Intelligence
  66. ^J. Schmidhuber (2002): The Speed Prior: A New Simplicity Measure Yielding Near-Optimal Computable Predictions. Proc. 15th Annual Conference on Computational Learning Theory (COLT 2002), Sydney, Australia, Lecture Notes in Artificial Intelligence, pp. 216–228. Springer: IDSIA – Dalle Molle Institute for Artificial Intelligence
  67. ^In The Hidden Reality: Parallel Universes and the Deep Laws of the Cosmos, 2011
  68. ^Weinberg, Steven (2005). 'Living in the Multiverse'. arXiv:hep-th/0511037v1.
  69. ^Richard J Szabo, An introduction to string theory and D-brane dynamics (2004)
  70. ^Maurizio Gasperini, Elements of String Cosmology (2007)
  71. ^Arthur Schopenhauer, 'Die Welt als Wille und Vorstellung,' supplement to the 4th book 'Von der Nichtigkeit und dem Leiden des Lebens'. see also R.B. Haldane and J. Kemp's translation 'On the Vanity and Suffering of Life' pp 395-6
  72. ^Trinh, Xuan Thuan (2006). Staune, Jean (ed.). Science & the Search for Meaning: Perspectives from International Scientists. West Conshohocken, PA: Templeton Foundation. p. 186. ISBN978-1-59947-102-0.
  73. ^'Parallel universes. Not just a staple of science fiction, other universes are a direct implication of cosmological observations'. Scientific American. Vol. 288 no. 5. May 2003. pp. 40–51. arXiv:astro-ph/0302131. Bibcode:2003SciAm.288e..40T. doi:10.1038/scientificamerican0503-40. PMID12701329.
  74. ^Lewis, David (1986). On the Plurality of Worlds. Basil Blackwell. ISBN978-0-631-22426-6.

Further reading[edit]

  • Carr, Bernard. Universe or Multiverse? (2007 ed.). Cambridge University Press.
  • Deutsch, David (1985). 'Quantum theory, the Church–Turing principle and the universal quantum computer'(PDF). Proceedings of the Royal Society of London A. 400 (1818): 97–117. Bibcode:1985RSPSA.400...97D. CiteSeerX10.1.1.41.2382. doi:10.1098/rspa.1985.0070.
  • Ellis, George F.R.; William R. Stoeger; Stoeger, W. R. (2004). 'Multiverses and physical cosmology'. Monthly Notices of the Royal Astronomical Society. 347 (3): 921–936. arXiv:astro-ph/0305292. Bibcode:2004MNRAS.347..921E. doi:10.1111/j.1365-2966.2004.07261.x.
  • Manly, Steven (2011). Visions of the Multiverse (1st ed.). Pompton Plains, New Jersey: New Page Books. ISBN9781601631299.
  • Surya-Siddhanta: A Text Book of Hindu Astronomy by Ebenezer Burgess, ed. Phanindralal Gangooly (1989/1997) with a 45-page commentary by P. C. Sengupta (1935).
  • Melmond (2019). I Know the Multiverse Is Real. All Poetry.

External links[edit]

Look up multiverse in Wiktionary, the free dictionary.
Wikiquote has quotations related to: Multiverse
Wikimedia Commons has media related to Multiverse.
  • Interview with Tufts cosmologist Alex Vilenkin on his new book, 'Many Worlds in One: The Search for Other Universes' on the podcast and public radio interview program ThoughtCast.
  • Joseph Pine II about Multiverse, Presentation at Mobile Monday Amsterdam, 2008
  • Multiverse – Radio-discussion on BBC Four with Melvyn Bragg
  • What Is The Multiverse? A layman's explanation
Retrieved from 'https://en.wikipedia.org/w/index.php?title=Multiverse&oldid=912321086'

Imagine a world where dinosaurs hadn't become extinct, Germany had won World War II and you were born in an entirely different country.

These worlds could exist today in parallel universes, which constantly interact with each other, according to a group of US and Australian researchers.

It may sound like science fiction, but the new theory could resolve some of the irregularities in quantum mechanics that have baffled scientists for centuries.

The team proposes that parallel universes really exist, and that they interact. That is, rather than evolving independently, nearby worlds influence one another by a subtle force of repulsion. They show that such an interaction could explain everything that is bizarre about quantum mechanic

WHAT THEY CLAIM:

Professor Wiseman and his colleagues propose that:

The universe we experience is just one of a gigantic number of worlds. Some are almost identical to ours while most are very different;

All of these worlds are equally real, exist continuously through time, and possess precisely defined properties;

All quantum phenomena arise from a universal force of repulsion between 'nearby' (i.e. similar) worlds which tends to make them more dissimilar.

The team from Griffiths University and the University of California suggest that rather than evolving independently, nearby worlds influence one another by a subtle force of repulsion.

They claim that such an interaction could explain everything that is bizarre about how particles operate on a microscopic scale.

Quantum mechanics is notoriously difficult to fathom, exhibiting weird phenomena which seem to violate the laws of cause and effect.

'The idea of parallel universes in quantum mechanics has been around since 1957,' said Howard Wiseman, a professor in Physics at Griffith University.

'In the well-known 'Many-Worlds Interpretation', each universe branches into a bunch of new universes every time a quantum measurement is made.

Share this article

'All possibilities are therefore realised – in some universes the dinosaur-killing asteroid missed Earth. In others, Australia was colonised by the Portuguese.'

'But critics question the reality of these other universes, since they do not influence our universe at all.

'On this score, our 'Many Interacting Worlds' approach is completely different, as its name implies.'

Parallel universe theory

The Many Worlds theory was first proposed by Hugh Everett, who said that the ability of quantum particles to occupy two states seemingly at once could be explained by both states co-existing in different universes.

Instead of a collapse in which quantum particles 'choose' to occupy one state or another, they in fact occupy both, simultaneously.

IS OUR UNIVERSE A HOLOGRAM? UNIVERSE COULD BE A MERE PROJECTION

The holographic model suggests gravity in the universe comes from thin, vibrating strings. These strings are holograms of events that take place in a simpler, flatter cosmos

The universe is a hologram and everything you can see - including this article and the device you are reading it on - is a mere projection.

Parallel Universe Theory

This is according to a controversial model proposed in 1997 by theoretical physicist Juan Maldacena.

Evidence Of Parallel Universes

Until now the bizarre theory had never been tested, but recent mathematical models suggest that the mind-boggling principle could be true.

According to the theory, gravity in the universe comes from thin, vibrating strings.

These strings are holograms of events that take place in a simpler, flatter cosmos. Professor Maldacena's model suggests that the universe exists in nine dimensions of space, and one of time.

In December, Japanese researchers attempted to tackle this problem by providing mathematical evidence that the holographic principle might be correct.

The holographic principle suggests that, like the security chip on a credit card for example, there is a two-dimensional surface that contains all the information needed to describe a three-dimensional object - which in this case is our universe.

In essence, the principle claims that data containing a description of a volume of space - such as a human or a comet - could be hidden in a region of this flattened, 'real' version of the universe.

In a black hole, for instance, all the objects that ever fall into it would be entirely contained in surface fluctuations. This means that the objects would be stored almost as 'memory' or fragment of data rather than a physical object in existence.

Parallel Universe Proof

Like Everett, Professor Wiseman and his colleagues propose the universe we experience is just one of a gigantic number of worlds.

Parallel Universe Of Self Pdf

They believe some are almost identical to ours, while most are very different.

All of these worlds are equally real, existing continuously through time, and possessing precisely defined properties.

They suggest that quantum phenomena arise from a universal force of repulsion between 'nearby' worlds which tend to make them more dissimilar.

Dr Michael Hall from Griffith's Centre for Quantum Dynamics added that the 'Many-Interacting Worlds' theory may even create the extraordinary possibility of testing for the existence of other worlds.

'The beauty of our approach is that if there is just one world, our theory reduces to Newtonian mechanics, while if there is a gigantic number of worlds it reproduces quantum mechanics,' he says.

Dr Michael Hall from Griffith's Centre for Quantum Dynamics says the 'Many-Interacting Worlds' theory may even create the extraordinary possibility of testing for the existence of other worlds

'In between it predicts something new that is neither Newton's theory nor quantum theory.

'We also believe that, in providing a new mental picture of quantum effects, it will be useful in planning experiments to test and exploit quantum phenomena.'

'For us at least there is nothing inherently implausible in the idea,' added Professor Wiseman.

People From Parallel Universes

'For fans of science fiction it makes those plots involving communication between parallel worlds not quite so far-fetched after all.'

Parallel Universe Experiences

The ability to approximate quantum evolution using a finite number of worlds could have significant ramifications in molecular dynamics, which is important for understanding chemical reactions and the action of drugs.

Parallel Universe Of Self Pdf Online

Professor Bill Poirier, Distinguished Professor of Chemistry at Texas Tech University, has observed: 'These are great ideas, not only conceptually, but also with regard to the new numerical breakthroughs they are almost certain to engender.'